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Concepts

Denote the set of probability measures on X by P(X ), and
similarly for P(Y).
For µ ∈ P(X ) and ν ∈ P(Y), we denote by Π(µ, ν) the set of all
transport plans, i.e., probability measures π on X × Y with
marginals µ and ν:

Π(µ, ν) = {π ∈ P(X × Y) : π(A× Y) = µ(A), π(X × B) = ν(B)}
(1)

For a measurable map T : X → Y and a measure µ ∈ P(X ), the
pushforward measure T#µ ∈ P(Y) is defined by:

T#µ(B) = µ(T−1(B)) (2)

for all measurable sets B ⊂ Y.
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Monge problem

Let µ ∈ P(X ) and ν ∈ P(Y) be probability
measures, and let c : X × Y → R ∪ {+∞} be
a cost function. The Monge problem is to find
a measurable map T : X → Y that solves:

inf
T :T#µ=ν

∫
X
c(x ,T (x)) dµ(x) (3)
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Hardness of Monge problem

The Monge problem is challenging both theoretically and
computationally for several reasons:

1 The constraint T#µ = ν is highly non-linear in T : given
distribution function f (x)dx = µ, g(x)dy = ν, with simple
change of variable we have f (x) = g(T (x)) det (∇T ), which
lacks tools for analysis.

2 The problem may not have a solution, e.g., if µ has atoms
(point masses) while ν does not.

3 The formulation does not allow mass splitting, which can be
problematic for discrete measures with different numbers of
support points.
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Relaxation of Monge problem: the Kantorovich problem
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The Kantorovich problem

The Kantorovich problem is to find a transport plan π ∈ Π(µ, ν)
that solves:

inf
π∈Π(µ,ν)

∫
X×Y

c(x , y) dπ(x , y) (4)

This is a linear programming problem in an infinite-dimensional
space.
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Unlike the Monge problem, the Kantorovich formulation:

1 Always has a solution under mild conditions on c (e.g., lower
semicontinuity)

2 Allows mass splitting, making it applicable to a broader range
of scenarios

3 Has a well-defined dual problem, which is helpful for
computation.
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Discrete formulation

In the discrete setting, when µ =
∑n

i=1 aiδxi and ν =
∑m

j=1 bjδyj ,
the Kantorovich problem becomes a finite-dim linear program:

min
π∈Rn×m

+

n∑
i=1

m∑
j=1

c(xi , yj)πij (5)

subject to:

m∑
j=1

πij = ai ∀i ∈ {1, . . . , n} (6)

n∑
i=1

πij = bj ∀j ∈ {1, . . . ,m} (7)

Here, πij represents the amount of mass transported from location
xi to location yj .
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Wasserstein distance

When the cost function is a distance raised to a power, the optimal
transport cost defines a distance between probability distributions,
known as the Wasserstein distance. For p ≥ 1, the p-Wasserstein
distance between µ, ν ∈ Pp(X ) is defined as:

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X×X

∥x − y∥p dπ(x , y)
)1/p

(8)

The 2-Wasserstein distance, also known as the Earth Mover’s
Distance, has various applications in machine learning such as
image processing.
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Kantorovich-Rubinstein duality for OT in Rn

The dual formulation of the Kantorovich problem is:

sup
(ϕ,ψ)∈Φc

{∫
X
ϕ(x) dµ(x) +

∫
Y
ψ(y) dν(y)

}
(9)

where Φc is the set of pairs of functions ϕ : X → R ∪ {−∞} and
ψ : Y → R ∪ {−∞} that satisfy:

ϕ(x) + ψ(y) ≤ c(x , y) ∀(x , y) ∈ X × Y (10)
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Application of duality in Neural OT1

Eq. (9) is proved to be equal to

W 2
2 (ν, µ)=Cν,µ− inf

f ∈CVX
{Eν [f (X )]+Eµ[f ∗(Y )]} (11)

where CVX stands for the set of convex functions,
Cν,µ := {Eν [∥X∥2] + Eµ[∥Y ∥2]}, and the
f ∗(x) = minx ′ < x ′, x > −f (x ′) is the conjugate function of f ,
which is always convex. The CVX condition restricts the search
space for f which becomes handy for design of optimization
algorithms.

1Makkuva, Ashok, et al. ”Optimal transport mapping via input convex
neural networks.” International Conference on Machine Learning. PMLR, 2020.
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Computation of f ∗

Convex conjugate function f ∗ is not available explicitly in most of
applications, but can be characterized as

f ∗(y) = sup
g∈CVX

⟨y ,∇g(y)⟩ − f (∇g(y)) (12)

with the maximum being achieved at g = f ∗, the semi-dual
formulation (11) can be rewritten as

W 2
2 (ν, µ) = sup

f ∈CVX
inf

g∈CVX
Vν,µ(f , g) + Cν,µ, (13)

where Vν,µ(f , g) is a functional of f and g defined as

Vν,µ(f ,g)=−Eν [f (X)]−Eµ[⟨Y ,∇g(Y )⟩−f (∇g(Y))]. (14)
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Continued

Since now the only variables are convex functions f , g with no
constraints, they can be learned by neural network. Check for
example 23.

2Korotin, Alexander, Daniil Selikhanovych, and Evgeny Burnaev. ”Neural
Optimal Transport.” The Eleventh International Conference on Learning
Representations.

3Amos, Brandon, Lei Xu, and J. Zico Kolter. ”Input convex neural
networks.” International conference on machine learning. PMLR, 2017.
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The Breiner Potential

One of the most celebrated results in optimal transport theory is
Brenier’s theorem, which characterizes the solution to the Monge
problem when the cost function is the squared Euclidean distance.

Theorem (Brenier)

Let µ, ν ∈ P2(Rd) be probability measures where µ is absolutely
continuous with respect to Lebesgue measure. Then:

1 There exists a unique (up to µ-null sets) optimal transport
map T that solves the Monge problem with cost
c(x , y) = ∥x − y∥2.

2 This optimal map is given by T = ∇φ for some convex
function φ : Rd → R.

3 The optimal transport plan in the Kantorovich problem is
unique (a.e. ) and is given by π = (id ×∇φ)#µ.
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Why is Brenier theorem important?

Brenier’s theorem establishes a profound connection between
optimal transport and convex analysis. It states that the optimal
transport map is the gradient of a convex function, which has
significant implications for computational methods and
applications.

Remark

Noticing that the Brenier theorem holds with constraint almost
everywhere (a.e. ), which means that exceptions occur in a null set
(a set with measure 0). This indicates the fundamental
difference between the fixed support (with finite support
size) and the free support case: the former cannot be
treated as a Monge problem, so you would have to study the
coupling instead of the transport map.
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Dynamic optimal transport

The Benamou-Brenier formulation 4 recasts the Wasserstein-2
distance as a fluid-dynamics problem:

W 2
2 (µ0, µ1) = inf

(ρ,v)

∫ 1

0

∫
Rd

ρt(x)∥vt(x)∥2 dx dt (15)

subject to:

∂tρt +∇ · (ρtvt) = 0, ρ0 = µ0, ρ1 = µ1 (16)

where ρt is the density at time t and vt is the velocity field.
Eq. (16) is called the continuity equation.

4Benamou, Jean-David, and Yann Brenier. ”A computational fluid
mechanics solution to the Monge-Kantorovich mass transfer problem.”
Numerische Mathematik 84.3 (2000): 375-393.
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(Continued) Dynamic OT

This formulation has several advantages:

1 It provides a continuous interpolation between the source
and target measures (Which can serve as training data for
generation model)

2 It has connections to fluid dynamics and PDEs

3 It can be generalized to handle additional constraints or costs



Optimal Transportation and Applications

OT with free support (infinite dimension)

McCann’s interpolation

The solutions to the Benamou-Brenier problem define geodesics in
the Wasserstein space. Specifically, for t ∈ [0, 1], the measures ρt
trace the unique constant-speed geodesic connecting µ0 and µ1 in
(P2(Rd),W2).
When µ0 is absolutely continuous (i.e., having density function a.e.
), the geodesic can be written explicitly in terms of the optimal
transport map T from µ0 to µ1:

ρt = ((1− t) · id + t · T )#µ0 (17)

This expression, known as McCann’s interpolation, provides a
simple way to visualize the optimal transport between two
measures.
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Connections with Fokker-Planck equation

The prestigious diffusion model5 is based on the Fokker-Planck
function, which describes the diffusion process:

dX = f (X , t)dt + σ(X , t)dW , (18)

f (X , t) : Rn × [0, 1] → Rn is the divergence vector field at the
diffusion time t, which is learned with neural network,
σ(X , t) ∈ Rn×n is some coefficient matrix, dW ∈ Rn is the Brown
motion in Rn.

5A good tutorial is https://diffusion.csail.mit.edu/
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The Fokker-Planck equation

If xt ∼ p(x , t), then p(x , t) satisfies the Fokker-Planck equation:

∂p(x , t)

∂t
= −∇ ·

(
f (x , t)p(x , t)

)
+∇ ·

(
D(x , t)∇p(x , t)

)
,

where D(x , t) = 1
2σ(x , t)σ

⊤(x , t). Recall the continuity equation
(16) in the formula of dynamic OT, we have the following
observation:

Remark

The solution vt in the dynamic OT (15) can be seen as the
evolution dynamics of dXt = vt(Xt)dt from distribution µ0 to µ1,
such that the motion energy is minimized.



Optimal Transportation and Applications

OT with free support (infinite dimension)

Applications in generative model

We will spend several pages to illustrate the generative model, and
how is the ideas in OT applied to it. In particular, we introduce
OT’s application in [Lipman22]6 and [Liu22]7. The rectified flow,
proposed in [Liu22], is the foundation of the SOTA generative
models, such as Stable Diffusion 3, FLUX and JanusFlow.

6Lipman, Yaron, et al. ”Flow Matching for Generative Modeling.” The
Eleventh International Conference on Learning Representations.

7Liu, Xingchao, Chengyue Gong, and Qiang Liu. ”Flow Straight and Fast:
Learning to Generate and Transfer Data with Rectified Flow.” The Eleventh
International Conference on Learning Representations.
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Generative model: problem setting

The problem of generating can be reduced to the following:

Problem

Given empirical observations of two distributions π0, π1 on Rd , find
a transport map T : Rd → Rd , which, in the infinite data limit,
yields Z1 := T (Z0) ∼ π1 when Z0 ∼ π0, that is, (Z0,Z1) is a
coupling (a.k.a transport plan) of π0 and π1.
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Generative model: applications

1 Generative modeling: This is the case when π1 is an
empirically observed unknown distribution (of e.g.,
images), and π0 an elementary distribution, such as the
standard Gaussian distribution. We are interested in finding a
nonlinear transform that turns a point drawn from π0 to point
that follows the data distribution π1.

2 Transfer modeling: This is the case when both π0 and π1
are empirically observed unknown distributions, and we
want to build a procedure to transfer a data point from π0 to
a point that follows π1, or vice versa. This task admits
enormous applications, such as domain adaption in transfer
learning, image editing, and sim2real in robotics.
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Generative model: example

Figure: Generating (upper 2 rows) and transferring (lower 2 rows) of
rectified flow.
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Generative model: trained to simulate MaCann’s
interpolation

Recall that in the diffusion model, the neural network simulates the
divergence vector field f (X , t) in Eq. (18). We will use v(X , t) to
denote f (X , t) for consistency with [Lipman22].
In order to “causalize” the interpolation process Xt , by
”projecting” it to the space of causally simulatable ODEs of form
dZt = v(Zt , t)dt. A natural way to the L2 projection on the
velocity field, find v by minimizing the least squares loss with the
line directions X1 − X0:

min
v

∫ 1

0
E
[
∥(X1 − X0)− v(Xt , t)∥2

]
dt. (19)
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continued

Theoretically, the solution can be represented using conditional
expectation:

v(z , t) = E[X1 − X0 | Xt = z ],

which is the average of the directions of the lines passing through
point z at time t.
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Rectified flow

For the solution Zt obtained from samples (X0,X1), denote the
rectified flow Z = {Zt : t ∈ [0, 1]} induced from (X0,X1) by
Z = Rectflow((X0,X1)). Then the following properties hold:

Theorem

1. The ODE trajectories Zt and the interpolation Xt have the
same marginal distributions, that is,

Law(Zt) = Law(Xt), ∀t ∈ [0, 1].

Hence, (Z0,Z1) forms a coupling of π0 and π1.
2. (Z0,Z1) guarantees to yield no larger transport cost than
(X0,X1) simultaneously for ‘all convex cost functions‘ c , that is,

E[c(Z1 − Z0)] ≤ E[c(X1 − X0)], ∀ convex c : Rd → R.
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Why rectified flow?

The property 2 of rectified flow indicates that, applying the
Rectflow(·) operator recursively yields a sequence of rectified flows,
whose transport cost descends. Recall the formular of dynamic
optimal transport, the rectified flow is actually performing gradient
descent for dynamic OT8.
Since the McCann’s interpolation gives a gradient field that is
constant (invariant to time t), we do not have to use too many
steps to simulate the stochastic differential equation Eq. (18).
This explains why the Rectified flow model only requires a very
short number of steps to generate high-quality images, see Fig. ??.

8Liu, Qiang. ”Rectified flow: A marginal preserving approach to optimal
transport.” arXiv preprint arXiv:2209.14577 (2022).
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JKO flow

Jordan et al. study diffusion processes under the lens of the OT
metric and introduce a scheme that is now known as the JKO flow:
Starting with ρ0, and given a real-valued energy function
J : P(Rd) → R driving the evolution of the system, they define
iteratively for t ≥ 0, :

ρt+1 = arg min
ρ∈P2(Rd )

J(ρ) +
1

2τ
W 2(ρ, ρt) , (20)

where τ is a time step parameter.
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Analogy with Euclidean space

In Euclidean space, the gradient flow is written:{
Ẋ (t) = −∇f (X (t)), t > 0
X (0) = x0

(21)

1 forward scheme: xk+1 = xk − γ∇f (xk) (gradient descent)
2 backward scheme:

xk+1 = argmin
x∈Rn

(
f (x) +

1

2αk
∥x − xk∥22

)
⇕

0 = ∇f (xk+1) +
1

αk
(xk+1 − xk)

We got the proximal point method.
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JKO flow

Recall the SDE form of the diffusion process, it is natural to regard
JKO flow as the proximal point method for functionals in
Wasserstein space. For illustrations on the theory, see chapter 15
of [Vil08]9.

9Villani, Cédric. Optimal transport: old and new. Vol. 338. Berlin:
springer, 2008.
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Tracking Cell Dynamics with scRNA-seq and Optimal
Transport

Challenge in Time-Series scRNA-seq:

1 scRNA-seq captures gene expression at single-cell resolution
across time.

2 Cells are destroyed during sequencing → no paired
measurements over time.

3 Only unpaired snapshots are available at different time points.

This breaks the link between cells across time, which leads to:
♢ Cannot track individual cell trajectories
♢ Cannot directly observe gene expression dynamics
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Continued

OT is a powerful tool to infer relationships between cells across
time points.

1 Helps reconstruct cell age relationships and developmental
trajectories.

2 Enables dynamic modeling of gene expression
changes.1011121314

10Schiebinger, G. et al. Cell 176, 928–943. e22 (2019)
11Tong, A. et al. Proc. 37th ICML 9526–9536 (PMLR, 2020).
12Huguet, G. et al. Adv. Neur. Inf. Process. Syst. 35, 29705–29718 (2022)
13Bunne, Charlotte, et al. Nature Reviews Methods Primers 4.1 (2024): 58.
14Sha, Y., Qiu, Y., Zhou, P. et al. Nat Mach Intell 6, 25–39 (2024).
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Workflow of stem cell research
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Cell dynamics
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Assumptions in stem cell evolution



Optimal Transportation and Applications

OT with free support (infinite dimension)

JKO flow in cell dynamics15

The biologists believe that the lineage and fate determination of
cell follows the Waddington landscape: The evolution path tend to
descend on some energy function.
Recall the energy function J(ρ) in Eq. (20), with snapshot
observation data, we can learn the energy with the matching
between cells in the same lineage, so that the future evolution can
be predicted.

15Bunne, Charlotte, et al. ”Proximal optimal transport modeling of
population dynamics.” International Conference on Artificial Intelligence and
Statistics. PMLR, 2022.
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Energy-Driven and arbitrary Population Dynamics
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Variations of OT

1 Unbalanced OT

2 Gromov-Wasserstein distance

3 . . .
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Unbalanced Optimal Transport (UOT)

Motivation: Handle situations where the total mass of the
source and target distributions may differ (µ(X ) ̸= ν(Y )).

Introduces a marginal relaxation or a penalty for
adding/removing mass.

Several formulations exist. One common approach using
entropic regularization and KL divergence for marginal
penalties is:

min
γ∈M+(X×Y )

∫
X×Y

c(x , y)dγ(x , y)+λ1KL(πX#γ∥µ)+λ2KL(πY#γ∥ν)

where λ1, λ2 ≥ 0 are regularization parameters, and πX#γ and
πY#γ are the marginals of γ.
Advantages: More flexible for real-world data. Applications in
domain adaptation, generative modeling, etc.
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Gromov-Wasserstein (GW) Distance

Goal: Compare probability distributions µ on (X , dX ) and ν
on (Y , dY ), where X and Y can be different metric spaces.

Compares the internal structures (pairwise distances) of the
two spaces. Gromov-Wasserstein Problem:

GW p
p (µ, ν) = inf

γ∈Π(µ,ν)

(∫
X×Y

∫
X×Y

|dX (x , x ′)− dY (y , y
′)|pdγ(x , y)dγ(x ′, y ′)

)1/p

Intuition: Finds a coupling γ that aligns points such that
their relative distances are as similar as possible.

Applications: Shape matching, graph comparison,
multi-modal learning.
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Gromov-Wasserstein distance

Figure: CX is the cost within space X , such as a distance.
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Wasserstein Barycenter

Given probability measures {µ1, . . . , µN} and weights
{λ1, . . . , λN}, the Wasserstein barycenter µ∗ minimizes:

µ∗ = argmin
µ

N∑
i=1

λiW
p
p (µ, µi )

where Wp is the p-Wasserstein distance:

Wp(µ, ν) = inf
γ∈Π(µ,ν)

(∫
∥x − y∥pdγ(x , y)

)1/p

Key Idea

A ”mean distribution” that balances mass transport costs.
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Wasserstein Barycenter for Neuroimaging data average

Computing an average of brain imaging data is import:

1 Reduce Noise and Increase Signal Reliability

2 Capture Generalizable Patterns

3 Support Statistical Testing

4 Facilitate Visualization and Interpretation (so that it is more
smooth visually)
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Figure: The standard averaging referred to as Mean, the averaging after
Gaussian smoothing is referred to as Mean (S), and the Kantorovich
mean (p=1). The Mean shows signal spots in random places, marked in
green. The Kantorovich mean clearly shows strong signal spots in specific
brain areas, without blurring them like Gaussian smoothing does. In
contrast, Gaussian smoothing not only blurs the signals but also makes
them weaker.
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Wasserstein barycenter for model ensembling

When multiple prediction models are available, model ensembling
can be performed by computing the Wasserstein barycenter of their
probability outputs, providing a common reference distribution for
all models.

Accuracy resnet18 alone resnet34 alone Arithmetic Geometric W. Barycenter

Validation 0.7771 0.8280 0.8129 0.8123 0.8803
Test 0.7714 0.8171 0.8071 0.8060 0.8680

Table: Attribute-based classification. The W. barycenter ensembling
achieves better accuracy by exploiting the cross-domain similarity matrix
K , compared to a simple linear-transform of probability mass from one
domain to another as for the original models or their simple averages.
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Wasserstein barycenter for ensembling caption models

Figure: Visualization
of the word
distributions of W.
barycenter, arithmetic
and geometric means
based on four
captioning models.
Wasserstein
ensembling has better
diversity.
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Domain Adaption

The goal of domain adaption is to train a model on a source
domain and make it perform well on a different but related target
domain, where labeled data may be limited or unavailable.
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Domain Adaption with OT

Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Figure: Illustration of OT for domain adaptation. (left) dataset for
training, i.e. source domain, and testing, i.e. target domain. Note that a
classifier estimated on the training examples clearly does not fit the target
data. (middle) a data dependent transportation map Tγ0 is estimated
and used to transport the training samples onto the target domain. Note
that this transformation is usually not linear. (right) the transported
labeled samples are used for estimating a classifier in the target domain.
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Continued

To solve the adaptation problem:

1 Estimate µs and µt from indicators of samplings in source
domain Xs and target domain Xt

2 Find a transport map T from µs to µt

3 Use T to transport labeled samples Xs and train a classifier
from them.

The problem of finding such a transportation of minimal cost has
already been investigated in the literature. For instance, the
optimal transportation problem as defined by Monge is the solution
of the following minimization problem:

T0 = argmin
T

∫
Ωs

c(x,T(x))dµ(x), s.t. T#s = µt (22)



Optimal Transportation and Applications

Applications of OT

Color Transfer

Goal: Transfer the color palette of one image (source) to
another (target).

Applications:

Artistic style editing
Image harmonization
Film color grading

Challenge: Achieve natural-looking results while preserving
image content.
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Why Use Optimal Transport?

Color distributions in source and target images can differ
significantly.

OT finds a mapping that minimally ”moves” one distribution
into another.

It ensures:

Global color structure is preserved
Mapping is theoretically grounded

Especially effective when histogram matching fails.
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OT for Color Transfer: Pipeline

1 Sample color pixels from source and target images.

2 Estimate color histograms or empirical distributions.

3 Solve the OT problem (usually Kantorovich).

4 Apply the computed transport plan to recolor source pixels.
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Wasserstein Distributionally Robust Optimization

Standard machine learning minimizes risk over an empirical
distribution:

min
θ

EP̂ [ℓ(x , θ)]

But what if P̂ is not a good estimate of the true distribution
P?

DRO protects against distributional shifts by optimizing over a
set of plausible distributions:

min
θ

sup
Q∈U(P̂)

EQ [ℓ(x , θ)]

U(P̂): uncertainty set around empirical distribution
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Why Use Wasserstein Distance?

Wasserstein distance provides a meaningful way to measure
differences between distributions:

Wc(P,Q) = inf
γ∈Π(P,Q)

∫
c(x , y) dγ(x , y)

Captures geometry of the data space (unlike KL or TV
divergence).

Can define the uncertainty set as a Wasserstein ball :

U(P̂) = {Q : Wc(Q, P̂) ≤ ρ}

Leads to robustness against perturbations in the input
distribution.
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Wasserstein DRO Objective

Given loss ℓ(x , θ), the W-DRO objective becomes:

min
θ

sup
Q:W (Q,P̂)≤ρ

EQ [ℓ(x , θ)]

Can be reformulated using strong duality (under convexity
assumptions):

min
θ

EP̂ [ℓ(x , θ)] + ρ · Ω(θ)

Where Ω(θ) acts as a robustness regularizer.
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Interpretation and Benefits

W-DRO learns models that are robust to small changes in
data distribution.

Especially useful in:

Domain shift
Noisy data
Fairness-aware learning

Provides a theoretical robustness guarantee.

Leads to better generalization in out-of-distribution (OOD)
settings.
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Why Use Wasserstein Distance?

Captures geometric structure between distributions.

Suitable for complex, non-Gaussian temporal dynamics.

Goes beyond pointwise matching — compares entire sample
distributions.
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OT FOR TIME-SERIES IMPUTATION

Learn an imputation model (e.g., Transformer) that fills
missing values.

View completed sequences as empirical distributions.

Use Wasserstein discrepancy to align predicted and real
distributions.
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Computing Wasserstein Discrepancy

Definition (Proximal Spectral Wasserstein Discrepancy)

The PSW discrepancy seeks a transport plan T ∈ Rn×m
+ that

transports the distribution α to β at minimal cost, defined as:

Pκ(α, β) := min
T≥0

〈
D(F),T

〉
+κ

(
DKL(T1m∥∆n) + DKL(T

⊤1n∥∆m)
)

where D(F) is the pairwise distance matrix computed using
Pairwise Spectral Distance; κ is the matching strength; ∆n = 1n/n
and ∆m = 1m/m are uniform simplex vectors; Pκ denotes the
PSW discrepancy.
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Objective Function

Total loss combines reconstruction and distributional
alignment:

Ltotal = Lrecon + λW (P,Q)

Lrecon: e.g., MSE on observed entries.

W (P,Q): Wasserstein discrepancy.

λ: Weighting factor.
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Results

Wasserstein discrepancy enforces distributional consistency.

It regularizes imputation models toward realistic global
structure.

Enhances quality of imputed values beyond just fitting
observed data.
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